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Effect of an absorbate concentration level on the coupled
mass and heat transfer during short gas plugs dissolution
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Abstract —We studied gas absorption from a rising gas plug when the concentration level of the absorbate in the absorbent is
finite (finite dilution of absorbate approximation). It is shown that in the case of the finite dilution the lateral convective term in the
equation of convective mass transfer in the absorbate must be taken into account. It is found that the mass transfer rate increases
with the increase of the absorbate concentration level. Isothermal and nonisothermal absorptions are considered whereby the latter is
described by the coupled equations of mass and heat transfer. It is found that the mass transfer rate decreases when the dimensionless
heat of absorption increases.  2000 Éditions scientifiques et médicales Elsevier SAS

nonisothermal absorption / mass and heat transfer / rising gas plug / finite dilution of absorbate in the absorbent

Nomenclature

a thermal diffusivity of a liquid . . . . . . m2·s−1

b coefficient in equation (37)
c molar density . . . . . . . . . . . . . . mol·m−3

cA absorbate concentration . . . . . . . . . mol·m−3

cp specific heat . . . . . . . . . . . . . . . kJ·kg−1·K−1

D molecular diffusion coefficient . . . . . m2·s−1

d coefficient in equation (37) . . . . . . . K−1

dch channel diameter . . . . . . . . . . . . . m
g acceleration of gravity . . . . . . . . . . m·s−2

K = cp/(dL), dimensionless number

L heat of absorption . . . . . . . . . . . . kJ·kg−1

LB length of a gas plug . . . . . . . . . . . m
Le =D/a, Lewis number
NAr mass flux density of componentA in

radial direction . . . . . . . . . . . . . . kg·m−2·s−1

NAz mass flux density of componentA in axial

direction . . . . . . . . . . . . . . . . . kg·m−2·s−1

Pe = U∞dchD
−1, Peclet number for a gas

plug
Pe∗ = 8/3(Re Pr), Peclet number for a falling

liquid film

* Correspondence and reprints.
elperin@menix.bgu.ac.il

Pr = ν/a, Prandtl number

Qc mass flux . . . . . . . . . . . . . . . . . kg·s−1

Qc0 mass flux in the approximation of the
infinite dilution . . . . . . . . . . . . . . kg·s−1

Qis
c0

mass flux for isothermal absorption in the

approximation of the infinite dilution . . kg·s−1

QT heat flux . . . . . . . . . . . . . . . . . . kJ·s−1

QT0 heat flux in the approximation of infinite
dilution . . . . . . . . . . . . . . . . . . kJ·s−1

Re = 8usδ/(3ν), Reynolds number for liquid
film

r radial coordinate . . . . . . . . . . . . . . m
R channel radius . . . . . . . . . . . . . . . m
Ri ratio between terms in equation (13)
Sh Sherwood number
Sh0 Sherwood number under the assumption of

the infinite dilution
s length of an arc measured from a gas plug’s

nose . . . . . . . . . . . . . . . . . . . . m
X = (xA − xA0)/(xAs − xA0), dimensionless

weight fraction of the absorbate
xA weight fraction of the absorbate
xAs weight fraction of the absorbate at the

gas–liquid interface
xA0 weight fraction of the absorbate at the

inlet
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x′A0
equilibrium weight fraction of absorbate
at the initial temperature

X∗A molar fraction of the absorbate at the
gas–liquid interface

XAi molar fraction of the absorbate at the
inlet

T temperature of a liquid . . . . . . . . K
T ′0 equilibrium temperature at the initial

concentration . . . . . . . . . . . . . K
us interfacial velocity in the liquid film . m·s−1

U∞ velocity of a gas plug rising in a
stagnant fluid . . . . . . . . . . . . . m·s−1

vr , vz velocity components . . . . . . . . . m·s−1

z axial coordinate . . . . . . . . . . . . m

Greek symbols

α coefficient of heat transfer . . . . . . kJ·m−2·s−1·K−1

α0 coefficient of heat transfer in the
approximation of the infinite dilution
of the absorbate . . . . . . . . . . . . kJ·m−2·s−1·K−1

β finite dilution nonisothermal mass
transfer coefficient . . . . . . . . . . m·s−1

β is finite dilution isothermal mass transfer
coefficient . . . . . . . . . . . . . . . m·s−1

β0 infinite dilution nonisothermal mass
transfer coefficient . . . . . . . . . . m·s−1

β is
0 infinite dilution isothermal mass

transfer coefficient . . . . . . . . . . m·s−1

δ thickness of a liquid film . . . . . . . m
θ1 = β is/β is

0 , correction factor which
accounts for the effect of the finite
concentration level of the absorbate on
the rate of mass transfer in a case of
isothermal absorption

θ2 = β/β is
0 , correction factor which

accounts for the effects of the
temperature change and the finite
concentration level of the absorbate on
the rate of mass transfer

θ3 = β/β0, correction factor which
accounts for the effect of the finite
concentration level of the absorbate on
the rate of mass transfer in a case of
nonisothermal absorption

θ4 = β/β is, correction factor which
characterizes an influence of
temperature change on the rate of mass
transfer in a case of the absorption
with a finite concentration level of the
absorbate

λ thermal conductivity of a liquid . . . kJ·m−1·s−1·K−1

µ function determined by equation (15) m4·s−1

µ0 shape factor for a gas plug . . . . . . m4·s−1

ρ density of solution . . . . . . . . . . kg·m−3

φ velocity potential . . . . . . . . . . . m2·s−1

ϕ dimensionless average mass velocity
ψ stream function . . . . . . . . . . . . m3·s−1

Ψ =ψ/(2√Dµ), similarity variable
Ψ ′ =ψ/(2√aµ ), similarity variable
Ω enhancement factor

Subscripts

s value at the interface
∞ value at infinity
0 value at the inlet
A absorbate
B absorbent

1. INTRODUCTION

Mass and heat transfer between a rising bubble and
a liquid is of great importance for design and analy-
sis of two-phase absorbers. Examples of industrial op-
erations where effects of heat release during absorption
may be important include absorption of ammonia into
water, absorption of carbon dioxide and hydrogen sul-
fide into amine solutions, water vapor absorption (hygro-
scopic condensation) by aqueous solutions of LiBr and
LiCl and chlorinating of organic liquids. Commercial ap-
plicability of nonisothermal absorption in energy recov-
ery schemes is highly dependent on the overall transfer
rates which can be achieved. Examples of fast growing
worldwide applications of thermal technology are refrig-
eration and air-conditioning. Energy efficiency and new
fluids without adverse environmental effects are the two
most important challenges that the latter technologies
must overcome. Heat release effects are usually impor-
tant, and hence a deeper understanding of the simultane-
ous heat and mass transfer is required in order to increase
the efficiency and to reduce the environmental impact.
One of the examples of absorption with a finite concen-
tration level of the absorbate in the absorbent is water
vapor absorption (hygroscopic condensation) by aque-
ous solutions of LiBr and LiCl. Hygroscopic condensa-
tion is governed by mass transfer during nonisothermal
absorption. Brauner et al. [1, 2] and Brauner [3] evalu-
ated the effect of the absorbate concentration in systems
with a finite absorbate dilution on the rates of heat and
mass transfer during nonisothermal absorption. At finite
absorbate dilution the lateral convective term cannot be
ignored. Brauner et al. [2] showed that a nonisothermal
absorption by a falling liquid film in the approximation
of the thin concentration and temperature boundary lay-
ers in the liquid phase can be described by the following
equations of mass and heat transfer:
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us
∂cA

∂x
=D ∂

∂y

[
1

(1− cA/c)

∂cA

∂y

]
(1)

us
∂T

∂x
= a ∂

2T

∂y2 (2)

with the corresponding boundary conditions at the inter-
face and at infinity. Hereus is an interfacial velocity in
the liquid film, cA is absorbate concentration,c is a mo-
lar density,x andy are coordinates. The effect of a finite
dilution is described by the ratiocA/c 6= 0 in equation (1).
The above system of partial differential equations was re-
duced to the system of ordinary differential equations by
using the similarity transformation. The solution of equa-
tion (1) was obtained by Brauner et al. [2] in the form of
the Voltera integral equation while the solution of equa-
tion (2) has a form of the error function. It was shown
that the enhancement factorΩ which is equal to the ratio
of the actual absorption mass transfer coefficient to that
obtained under the assumption of the infinite dilution of
the absorbate in absorbent is determined by the following
expression:

Ω = Sh

Sh0
= 1

3

√
π

(X∗A −XAi )

[
x

δ

Pe∗

Le

]1/2

(3)

whereX∗A is a molar fraction of absorbate at the gas–
liquid interface,XAi is a molar fraction of the absorbate
at the inlet,Pe∗ is Peclet number for a falling liquid film
(for details see [2]). Analysis of equation (3) shows that
models using the assumption of the infinite absorbate di-
lution may considerably underestimate the rates of heat
and mass transfer during hygroscopic condensation. The
assumption of short exposure distance in a falling film
(see [1, 2]) was abandoned by Brauner in [3]. Brauner [3]
investigated the case of the developing concentration and
thermal boundary layers in a liquid film downstream and
took into account the increase of a liquid film thickness
due to the hygroscopic condensation. Brauner [3] em-
ployed the integral transform approach for solving simul-
taneously the continuity, diffusion and energy equations
for the cases of an isothermal and adiabatic wall.

Combined mass and heat transfer during pure gas
absorption from a rising gas plug was investigated by
Elperin and Fominykh [4] in the approximations of the
thin thermal and concentration boundary layers in the liq-
uid phase and of the infinite dilution of the absorbate.
Expressions for mass and heat transfer coefficients ob-
tained in [4] for the case of absorption without heat re-
lease recover the formulas for the isothermal absorption
derived previously by van Heuven and Beek [5]. Mass
transfer during nonisothermal absorption in a gas–liquid
plug flow was investigated in [6–9]. Infante Ferreira [6, 7]

investigated combined heat and mass transfer in a vertical
plug flow absorbers on the base of a system of equations
of momentum, heat and mass transfer which were solved
numerically. Elperin and Fominykh [8, 9] derived the re-
current formulas for the concentration and temperature in
thenth liquid plug and determined expressions for mass
and heat fluxes from thenth gas plugs and the total mass
and heat fluxes fromN gas plugs in a linear cluster of
plugs under the assumption of a perfect liquid mixing in
a liquid plug by a vortex and homogeneous distribution
of temperature and concentration of the dissolved gas in
each liquid plug. Case with the inhomogeneous distrib-
utions of temperature and concentration of the dissolved
gas in each liquid plug was analyzed in [8]. Results ob-
tained in [9] show that contribution of small spherical
bubbles in the liquid plug to mass and heat transfer in
gas–liquid plug flow is considerably higher than the con-
tribution of a gas plug. It was also found that the increase
of volumetric mass transfer coefficient with the increase
of the gas superficial velocity measured in [10] is deter-
mined by the increase of a void fraction and a number of
spherical gas bubbles in the liquid plug with a gas super-
ficial velocity increase.

In all the above referenced studies heat and mass trans-
fer during gas absorption from gas plugs was investigated
in the approximation of the infinite dilution of the ab-
sorbate in the absorbent. In the present work gas absorp-
tion from a short rising gas plug is investigated in the
approximation of finite dilution of the absorbate in the
absorbent.

2. DESCRIPTION OF THE MODEL

Consider a gas plug rising with a constant velocityU∞
in a vertical channel filled with liquid. Schematic view
of a gas plug and a system of coordinates attached to a
rising gas plug are shown infigure 1. Gas plug is assumed
to be short, i.e.LB ≤ 2dch. In the vicinity of the nose
and sides of a gas plug, where mass and heat transfer
is to be calculated, the usual assumption of streamline
flow is followed. Consider the coupled mass and heat
transfer during absorption of a pure soluble gas from
a rising gas plug in a channel accompanied by a heat
release. The problem is solved in the approximation
of a finite dilution of absorbate in the absorbent. The
thermodynamic parameters of a system are assumed
constant, and only the resistance to mass and heat transfer
in the liquid phase is taken into account. Assume that heat
released during absorption is dissipated in a liquid phase
where it causes an increase of the liquid temperature.
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Figure 1. Schematic view of a short gas plug.

Thus, coupling between mass and heat transfer occurs.
The equilibrium condition at the gas–liquid interface is
described by a linear dependence of the concentration on
temperature. Assume that development of thin diffusion
and temperature boundary layers in a liquid starts at the
leading edge of a gas plug, and convective diffusion and
heat transfer are determined by fluid velocity at the gas
plug surface. The gas plug–liquid interface is assumed to
be a surface of revolution obtained by the rotation of a
curver(z) around az-axis. The equation of a curver(z)
is derived in [11]. A differential mass balance equation
for the absorbing component in cylindrical coordinates
reads:

∂NAz

∂z
+ 1

r

∂

∂r
(rNAr )= 0 (4)

Expression for mass flux of absorbate in radial direc-
tionNAr in equation (4) reads (see [12]):

NAr =−Dρ
∂xA

∂r
+ xA(NAr +NBr ) (5)

Equation (5) shows that the diffusion flux of absorbate
NAr in radial direction relative to stationary coordinates
is a sum of two fluxes:xA(NAr + NBr ) which is a mass
flux of absorbate resulting from the bulk motion of fluid
and −Dρ∂xA/∂r, which is a mass flux of absorbate
resulting from the diffusion superimposed on the bulk
flow. Assume that the flux of the absorbent at gas–
liquid interface is negligibly small and density of solution
is constant. Then following Rice [13] we found the
expression for the mass flux of the absorbateNAr :

NAr =−Dρ
∂xA

∂r
+ xANAr

∣∣
s+ xAρvr (6)

and at the interface

NAr

∣∣
s=−

Dρ

1− xAs

(
∂xA

∂r

)
s

(7)

Finally, expression forNAr can be written as follows:

NAr =−Dρ
∂xA

∂r
− DρxA

1− xAs

(
∂xA

∂r

)
s
+ xAρvr (8)

Following the same procedure as forNAr component we
obtain the following formula forNAz :

NAz =−Dρ
∂xA

∂z
− DρxA

1− xAs

(
∂xA

∂z

)
s
+ xAρvz (9)

Equation of continuity in cylindrical coordinates reads:

∂vz

∂z
+ 1

r

∂

∂r
(rvr )= 0 (10)

Substituting expressions forNAr andNAz (equations (8)
and (9)) into equation (4) and using equation (10) we
arrive at the following equation of convective diffusion
in cylindrical coordinates:

vr
∂xA

∂r
+ vz ∂xA

∂z
=D

(
1

r

∂

∂r

(
r
∂xA

∂r

)
+ ∂

2xA

∂z2

)
+D

(
1

1− xAs

(
∂xA

∂r

)
s

1

r

∂

∂r
(rxA)

+ 1

1− xAs

(
∂xA

∂z

)
s

∂xA

∂z

)
(11)

For small mass transfer rates the velocity componentsvr
and vz in equation (11) can be determined from the
solution of the hydrodynamic problem with zero mass
flux at the interface. Validity of such an approach was
demonstrated by Bird et al. [12] for sublimation of a
semi-infinite plate of a volatile solid into an unbounded
gaseous stream. In order to simplify equation (11) we
introduce the stream functionψ and velocity potentialφ
as follows:

vz = 1

r

∂ψ

∂r
= ∂φ
∂z

vr =−1

r

∂ψ

∂z
= ∂φ
∂r

Using the assumption of potential flow

∂2φ

∂z2
+ ∂

2φ

∂r2
+ 1

r

∂φ

∂r
= 0

(12)
∂2ψ

∂z2
+ ∂

2ψ

∂r2
− 1

r

∂ψ

∂r
= 0
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equation (11) can be rewritten as follows:

∂xA

∂φ
=D

{
r2 ∂

2xA

∂ψ2
+ r2

1− xAs

(
∂xA

∂ψ

)
s

∂xA

∂ψ

}
+D

{
∂2xA

∂φ2 +
1

1− xAs

(
∂xA

∂φ

)
s

∂xA

∂φ

+ xAvr

(1− xAs)v
2r

(
∂xA

∂φ

)
s
+ 2vz
v2

∂xA

∂ψ

+ xAvz

(1− xAs)v
2

(
∂xA

∂ψ

)
s

}
(13)

wherev2 = v2
r + v2

z . Equation (13) can be simplified by
neglecting molecular diffusion along the streamlines so
that the third, the fourth and the fifth terms in the right-
hand side of equation (13) can be omitted. Assuming that
diffusion is confined to a thin film surrounding the gas
plug and taking into consideration thatPe� 1, where
Pe= U∞dch/D, U∞ = 0.35

√
gdch (see, e.g., [14]), we

neglect the sixth and the seventh terms in the r.h.s. of
equation (13). The validity of all these assumptions is dis-
cussed in the Appendix. Introducing these simplifications
equation (13) can be reduced to

∂xA

∂φ
=D

{
r2 ∂

2xA

∂ψ2 +
r2

1− xAs

(
∂xA

∂ψ

)
s

∂xA

∂ψ

}
(14)

Taking into account that diffusion boundary layer is
very thin, and following [15, 16] we assume thatr is a
function of φ only. Introduce a new variableµ defined
by ∂µ/∂φ = r2. Functionµ is determined by integration
along the gas plug surface,s being the length of arc
measured from the gas plug nose (seefigure 1) andv =
∂φ/∂s (for details see [15, 16]):

µ

(
z

dch

)
=
∫ φ

φ0

r2 dφ′ =
∫ s

0
r2v ds′ (15)

Using simple geometric arguments we find that

µ0=µ
(
δLB

δdch

)

=
(∫ LB/dch

0

(
r(z)

dch

)2
√

1+
(

dr(z)/dch

dz/dch

)2

·
√

2gz

dch
d

(
z

dch

))1/2

(16)

whereµ0 is a shape factor of a gas plug which was
introduced in [5] and tabulated in [15, 16]. Combining
equations (14) and (15) yields:

∂xA

∂µ
=D ∂2xA

∂ψ2
+ D

1− xAs

(
∂xA

∂ψ

)
ψ=0

∂xA

∂ψ
(17)

The last term in the r.h.s. of equation (17) accounts for the
effects of the finite concentration level of the absorbate.
This term is not equal to zero in the approximation of
a small but finite concentration level of the absorbate
(xAs� 1), and it vanishes in the approximation of the
infinite dilution of the absorbate in absorbent (xAs→ 0).
Following similar approach we arrived at the energy
equation taking into account thatLe� 1:

∂T

∂µ
= a ∂

2xA

∂ψ2 (18)

Initial and boundary conditions which accompany equa-
tions (17) and (18) read:

T = T0, xA = xA0 atµ= 0 (19)

T = Ts, xA = xAs atψ = 0 (20)

T = T0, xA = xA0 atψ→∞ (21)

Introducing new variables

X = xA − xA0

xAs− xA0

, Ψ = ψ

2
√
Dµ

equations (17), (19)–(21) can be transformed as follows:

d2X

dΨ 2 + 2(Ψ − ϕ)dX

dΨ
= 0 (22)

X = 1 atΨ = 0 (23)

X = 0 atΨ →∞ (24)

where

ϕ =−1

2

xAs− xA0

1− xAs

(
dX

dΨ

)
Ψ=0

(25)

Solution of equation (22) with boundary conditions (23),
(24) reads (see [12]):

xA − xA0

xAs− xA0

= 1− erf(Ψ − ϕ)
1+ erfϕ

(26)

whereϕ is a dimensionless mass average velocity. Using
equations (25) and (26) we find that(

dX

dΨ

)
Ψ=0
=−

[√
π

2
eϕ

2
(1+ erfϕ)

]−1

(27)

xAs− xA0

1− xAs

= ϕ√π eϕ
2
(1+ erfϕ)= 2ϕf (ϕ) (28)

xAs=
2ϕf (ϕ)+ xA0

1+ 2ϕf (ϕ)
(29)
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Taking into consideration that

Qis
c =−2πρD

∫ µ0

0

1

1− xAs

(
∂xA

∂ψ

)
ψ=0

dµ

= 4πD1/2ρϕµ
1/2
0 (30)

β is= Qis
c

Sρ(xAs− xA0)
= 4πD1/2ϕµ

1/2
0

S(xAs− xA0)
(31)

and (see [5])

Qis
c0
=−2πρD

∫ µ0

0

(
∂xA

∂ψ

)
ψ=0

dµ

= 4π1/2D1/2ρµ
1/2
0 (xAs− xA0) (32)

β is
0 =

Qis
c0

Sρ(xAs− xA0)
= 4π1/2D1/2µ

1/2
0 S−1 (33)

we find that

θ1= β
is

β is
0

= Qis
c

Qis
c0

=
√
π ϕ

xAs− xA0

=
√
π

2f (ϕ)(1− xAs)
(34)

whereθ1 is the correction factor which accounts for the
effect of the finite concentration level of the absorbate
on the rate of mass transfer for a case of isothermal
absorption. IfxA0 = 0 we can rewrite equation (34) as
follows:

θ1=
√
π (1+ 2ϕf (ϕ))

2f (ϕ)
(35)

Functionf (ϕ) and correction factorθ1 determined by
equations (28) and (35) are presented intable I. Function
f (ϕ) and correction factorθ1 are presented intable II

TABLE I

ϕ f (ϕ) 2ϕf (ϕ) θ1

0.0 0.8862 0.0 1.0
0.001 0.8872 0.002 1.0009
0.005 0.8912 0.0089 1.0033
0.01 0.8963 0.0179 1.006
0.1 0.9957 0.1992 1.0673
0.2 1.1278 0.4511 1.1403

for absorption of different gases in water at normal
temperature and pressure conditions (NTP). Inspection
of table II shows that absorption of CO2, H2S, Cl2 by
water can be described using the approximation of the
infinite dilution of absorbate in the absorbent (xAs→ 0
andϕ→ 0). The same is valid for N2 and O2 absorption
by water at NTP. However, in order to describe SO2
absorption by water at NTP the approximation of the
finite dilution of the absorbate in the absorbent (ϕ � 1
andxAs� 1) must be used.

The solution of equation (18) with initial and bound-
ary conditions (19)–(21) reads:

T = (T0− Ts)erf
(
Ψ ′
)+ Ts (36)

whereΨ ′ = ψ/(2√aµ). For the case of nonisothermal
absorption the unknown values of concentration and
temperature at the gas–liquid interface are found from the
following equations:

xA = dT + b atψ = 0 (37)

λ

∫ µ0

0

(
∂T

∂ψ

)
ψ=0

dµ

= LρD
∫ µ0

0

1

1− xAs

(
∂xA

∂ψ

)
ψ=0

dµ atψ = 0 (38)

Equation (37) describes a condition of equilibrium at the
gas–liquid interface (see, e.g., [17]), and equation (38)
implies that all heat released during absorption is dissi-
pated in the liquid phase. Note that for most gases co-
efficient d in equation (37) is negative. Equations (26),
(36)–(38) yield expressions forTs andxAs:

Ts− T0= T ′0− T0

1−K/(θ1
√

Le)
(39)

xAs− xA0 =
x ′A0
− xA0

1− θ1
√

Le/K

where Le = D/a, K = cp/(dL), x ′A0
= dT0 + b is

the equilibrium concentration at the initial temperature,
T ′0 = (xA0 − b)/d is the equilibrium temperature at
the initial concentration. Mass flux from a gas plug

TABLE II

Gas xAs ϕ f (ϕ) 2ϕf (ϕ) θ1 Le K

CO2 1.69·10−3 0.001 0.8872 0.002 1.00099 1.37·10−2 120
H2S 3.85·10−3 0.002 0.8882 0.00355 1.0043 10−2 42
Cl2 7.29·10−3 0.004 0.8901 0.0071 1.0027 8.7·10−3 33
SO2 0.113 0.07 0.9607 0.1345 1.0465 1.05·10−2 0.58
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and mass transfer coefficient can be determined from
equations (26) and (33):

Qc =−2πρD
∫ µ0

0

1

1− xAs

(
∂xA

∂ψ

)
ψ=0

dµ

= θ1Sβ
is
0

1− θ1
√

Le/K

(
x ′A0
− xA0

)
(40)

Taking into consideration that

β = Qc

(x ′A0
− xA0)ρS

(41)

equations (40) and (41) yield the correction factorθ2
which accounts for the effects of temperature change
and finite concentration level of the absorbate on mass
transfer rate during absorption:

θ2= β

β is
0

= 1

θ−1
1 −

√
Le/K

(42)

whereβ is
0 = 4π1/2D1/2µ

1/2
0 S−1 (see [5]). Taking into

account (for details see [4]) that

β0= Qc0

Sρ(c′0− c0)
= β is

0

1−√Le/K
(43)

equations (31), (40), (41) and (43) yield

θ3= β

β0
= 1−√Le/K

θ−1
1 −

√
Le/K

(44)

and

θ4= β

β is =
θ−1

1

θ−1
1 −

√
Le/K

(45)

whereθ3 is the correction factor which accounts for the
effect of a finite concentration level of the absorbate on
the rate of mass transfer for a case of nonisothermal ab-
sorption, andθ4 is the correction factor which accounts
for the effect of temperature change on the rate of mass
transfer for a case of absorption with a finite concentra-
tion level of the absorbate. Heat flux and heat transfer co-
efficient can be determined from equations (36) and (39)
as follows:

QT =−2πλ
∫ µ0

0

(
∂T

∂ψ

)
ψ=0

dµ

= 4π1/2λa−1/2µ
1/2
0

1−K/(θ1
√

Le)

(
T ′0− T0

)
(46)

α = QT

S(T ′0− T0)
= 4π1/2λa−1/2µ

1/2
0 S−1

1−K/(θ1
√

Le)
(47)

Figure 2. Dependence of θ2 = β/β is
0 versus θ1. (1)

√
Le/|K| = 0;

(2)
√

Le/|K| = 0.1; (3)
√

Le/|K| = 0.2; (4)
√

Le/|K| = 0.3;
(5)
√

Le/|K| = 0.4; (6)
√

Le/|K| = 0.5; (7)
√

Le/|K| = 0.75;
(8)
√

Le/|K| = 1.0.

Taking into consideration that (see [4])

α0= QT0

S(T ′0− T0)
= 4π1/2λa−1/2µ

1/2
0

S(1−K/√Le)
(48)

equations (47) and (48) yield

α

α0
= 1−√Le/K

θ−1
1 −

√
Le/K

= θ3 (49)

Dependences ofθ2, θ3 and θ4 versusθ1 for different
values of parameter

√
Le/|K| are shown infigures 2–4.

3. DISCUSSION AND CONCLUSIONS

We showed that for gas absorption from a rising gas
plug when the absorbate concentration level is finite the
convective term in equation of diffusion in the lateral
direction must be taken into account. It is found that
the correction factorθ1 which accounts for the effect
of the finite concentration level of the absorbate for
a case of isothermal absorption depends only on gas
solubility and initial concentration of the absorbate in
the absorbent. Equation (40) implies the increase of the
transfer rate with the increase of the concentration level.
The correction factorθ1 accounts for the enhancement
of mass transfer coefficient due to the effect of the
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Figure 3. Dependence of θ3 = β/β0 versus θ1. (1)
√

Le/|K| = 0;
(2)
√

Le/|K| = 0.25; (3)
√

Le/|K| = 0.5; (4)
√

Le/|K| = 1;
(5)
√

Le/|K| = 2; (6)
√

Le/|K| = 4; (7)
√

Le/|K| = 8.

Figure 4. Dependence of θ4 = β/β is versus θ1. (1)
√

Le/|K| = 0;
(2)
√

Le/|K| = 0.1; (3)
√

Le/|K| = 0.2; (4)
√

Le/|K| = 0.3;
(5)
√

Le/|K| = 0.4; (6)
√

Le/|K| = 0.5; (7)
√

Le/|K| = 0.75;
(8)
√

Le/|K| = 1.0.

additional convective term in equation (14). Increase
of θ1 with the increase of gas solubility is shown in
tables Iand II . Equations (39) show that the interfacial
equilibrium temperature increases with the increase of
dimensionless heat of absorption

√
Le/|K| while the

corresponding concentration decreases. The latter is valid
for most gases whend < 0 andK < 0. The effect of
heat and mass coupling parameter

√
Le/|K| on the rates

of mass transfer is shown infigures 2and3. For small√
Le/|K|mass transfer dominates, and the concentration

level effects significantly the relative coefficient of mass
transfer. For large

√
Le/|K| heat transfer dominates, and

the effect of the concentration level vanishes. Thus, the
slopes of the curves infigures 2and 3 decrease with
the increase of the dimensionless heat of absorption√

Le/|K|. Inspection offigure 4shows that the increase
of heat release causes the reduction of the rate of mass
transfer during absorption. The latter effect becomes
more pronounced with the increase of concentration level
of the absorbate in the absorbent. Inspection of the
results presented intable II shows that absorption of such
commonly used gases as CO2, H2S and Cl2 by water
at NTP can be described in the approximation of the
infinite dilution of absorbate in the absorbent (ϕ→ 0 and
xAs→ 0). The same is valid for N2 and O2 absorption by
water. However, absorption of SO2 by water at NTP can
be described only using an approximation of the finite
dilution of the absorbate in the absorbent (ϕ � 1 and
xAs� 1).
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APPENDIX

Consider the simplifying assumptions used in deriving
equation (14).The second term in the right-hand side of
equation (13) is retained, i.e. it was assumed that

R1=
[

1

1− xAs

(
∂xA

∂ψ

)
s

∂xA

∂ψ

](
∂2xA

∂ψ2

)−1

∼ 1 (A.1)

The third, the fourth, the fifth, the sixth and the seventh
terms in the right-hand side of equation (13) were
neglected, i.e. it was assumed that

R2=
(
∂2xA

∂φ2

)(
r2 ∂

2xA

∂ψ2

)−1

� 1 (A.2)

R3=
[

1

1− xAs

(
∂xA

∂φ

)
s

∂xA

∂φ

](
r2 ∂

2xA

∂ψ2

)−1

� 1 (A.3)

R4=
[

xAvr

(1− xAs)v
2r

(
∂xA

∂φ

)
s

](
r2 ∂

2xA

∂ψ2

)−1

� 1 (A.4)

R5=
[

2vz
v2

∂xA

∂ψ

](
r2 ∂

2xA

∂ψ2

)−1

� 1 (A.5)

Figure 5. Dependence of Ri (i = 1, . . . ,6) versus µ′ along two
streamlines ψ ′: dashed curves, 2.5·10−3; solid curves, 10−2.

R6=
[

xAvz

(1− xAs)v
2

(
∂xA

∂ψ

)
s

](
r2 ∂

2xA

∂ψ2

)−1

� 1 (A.6)

The termsR1, . . . ,R6 were obtained by differentiating
equation (26) and following the approach employed
in [18]. Figure 5shows the obtained values ofR1, . . . ,R6
plotted againstµ′ for representative values ofψ ′ and
for Pe= 2.74·105, whereψ ′ = ψ/(U∞R2) and µ′ =
µ/(U∞R3). Taking into consideration that the coefficient
of molecular diffusion for all gases in liquids is of the
order ofD ∼ 10−9 m2·s−1, Peclet number for gas plug,
dissolving in liquid is always high and it is of the order
of Pe∼ 105. The value ofPe= 2.74·105 corresponds to
a gas slug of CO2 rising in a channel (dch= 1 cm) filled
with water. Results presented infigure 5show that it is
reasonable to assume thatR1 ∼ 1 whileR2, . . . ,R6� 1
for small values ofD (largePe).

761


